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Abstract—In recent years an increasing effort was made to
reduce the energy consumption in digital subscriber line equip-
ment. Dynamic spectrum management (DSM) has been identified
as one promising method to achieve energy-efficiency in discrete
multitone based systems. An open research question is how to
ensure system robustness when applying highly optimized en-
ergy-efficient spectrum management. In this paper, we study the
problem of uncertainty in crosstalk noise and parameters, the
knowledge of which is indispensable for many DSM algorithms.
We introduce robust optimization for spectrum balancing as a
technique to achieve feasibility of the optimal power-allocation
under a deterministic parameter uncertainty model. This can be
seen as an extension of current schemes for spectrum balancing.
As a special case we consider the simple strategy of scaling the
crosstalk parameters to their worst-case values, which corresponds
to a specific uncertainty model and entails no changes to current
DSM algorithms. Finally, we quantify the benefit in worst-case
performance and the price in terms of energy by simulations.

Index Terms—Optimization methods, resource management, ro-
bustness, subscriber loops.

I. INTRODUCTION

I N recent years, both companies and society have shown
considerable interest in addressing the energy consumption

of broadband access equipment, e.g., in digital subscriber
lines (DSL) [1], [2]. Applied to discrete multitone (DMT)
based systems, dynamic spectrum management (DSM) has
been shown to be a candidate tool for this purpose [3]–[5]. Its
effectiveness is fundamentally based on the existing relation
between transmit power and system energy consumption in
current DSL transceivers. However, the transmission at min-
imum energy may come at the expense of system robustness.
It is therefore imperative to take robustness against model
inaccuracies or unstable environments explicitly into account
during the optimization process. The latter can be incorporated
by an adequate noise margin, optimization of outage proba-
bilities [6], and repeated optimization triggered for instance
by changes detected in the environment. While uncertainty
in the noise environment has previously been considered for
improving DSM algorithms [6], it is the uncertainty in crosstalk
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coefficients we are concerned with herein. The latter is also not
directly tackled by the virtual noise concept [7], which is used
in practice to compensate for uncertainty in crosstalk noise.
Coefficient uncertainty may include estimation errors as well
as implementation errors of the calculated power levels. Even
when the possible estimation error can be made diminishingly
small, especially the estimation of cross-channel information
comes at the cost of time, bandwidth and energy. Note that our
approach can easily be extended to additionally take uncertain-
ties of the noise-power on each carrier and line into account.

While stochastic optimization uses a probabilistic description
of uncertainties in objective and constraints, robust optimization
uses a set-based approach to take errors of model parameters
into account [8], [9], [10, Sec. 6.4]. Specific examples of how
this approach has been applied to problems in communications
can be found in [11]–[13]. We argue that DSL network operators
are less interested in a probabilistic constraint of not meeting
the imposed target-rates (i.e., an outage probability constraint)
than in a guaranteed minimum rate. Currently bit-rates are fixed
by the operators according to a service level agreement. There-
fore, the feasibility of the operating point under minimum en-
ergy consumption should be the aim, where a given uncertainty
model is anticipated. Differently stated, we are not concerned
with a long-term performance observation as it is natural for in-
stance when considering variations of wireless channels [14],
but we expect the optimized power-allocation to be worst-case
robust, i.e., robust under the worst parameters for the considered
degree of model errors.

In this paper we will compare the worst-case rate-loss of the
optimal nominal (i.e., nonrobust) bit-allocation to the price of
the additional robustness in terms of power consumption. In [8]
a similar comparison was done to show the effect of model-un-
certainty in numerous standard linear programs. The behavior
of our robust optimization approach and hence the comparison
depends on the definition of a parameter uncertainty set. There-
fore, we will explore two different uncertainty regions in the
shape of a box and an ellipsoid, respectively, based on their rep-
resentativeness and analytical/computational tractability. The
former model corresponds to the simple idea of scaling crosstalk
parameters to their worst-case values, the implementation of
which involves no changes to current DSM schemes. As a piv-
otal point in this respect we will investigate the interrelation be-
tween the robust per-carrier power-allocation problems and the
problem of allocating bits to carriers.

Our analysis is based on the hypothesis that the price of robust
power-allocation in terms of additional energy consumption is
lowered when applied in combination with bit-allocation over
carriers, as the latter allows to assign heavily interfering users
to different carriers. Based on the same argument, it is expected
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that the additional energy consumption for robustness may not
substantially depend on the specific shape of the uncertainty re-
gion but mainly on the level of robustness. In this study, we will
explore to which extent and under which conditions these intu-
itions hold. Our main contributions are hence the quantification
of the energy-cost of robust optimization in DSM based DSL
systems for various levels of uncertainty, and the investigation of
the impact of uncertainty-set shape on the complexity of DSM
algorithms and the total spent energy for robust transmission.

This paper is composed of three parts. First, in Sections II
and III, we present our system model and formulate the global
primal and dual energy minimization problems as well as
the subproblem of computing feasible per-carrier power-al-
locations. Second, in Section IV we derive the theoretical
background to our main results on what we term robust DSM,
being an approach to achieve worst-case optimality for deter-
ministic parameter uncertainty in DMT based DSL systems.
Emphasizing the differences between the two considered shapes
of uncertainty regions from an optimization point of view, we
derive outage probability bounds and feasibility conditions for
the per-carrier power-allocation subproblem. Finally, the third
part consists of Sections IV-D–IV-F and our simulations in
Section V, where we study the impact of robust optimization
on the multicarrier system as a whole, for instance by analyzing
the sensitivity w.r.t. uncertainty parameters. Furthermore, we
present how robust optimization can be applied in current
spectrum balancing algorithms, at which additional complexity,
and at which cost in terms of additional energy consumption.
Finally, in Section VI we summarize this work and highlight
our conclusions on the applicability of the proposed robust
optimization approaches.

II. SYSTEM MODEL

We adopt the system model from [15] wherein a multiuser
DSL network was considered with spectral cooperation among

active or inactive lines being under the control of our algo-
rithm. The crosstalk noise introduced by these subscriber lines is
regarded solely as noise by the receivers. A popular modulation
scheme employed for the frequency selective DSL channel is
discrete multitone (DMT), which under perfect synchronization
among transceivers separates the channel into orthogonal sub-
channels. Without loss of generality we assume that all users
deploy DMT modulation with the same number of carriers .
Furthermore, we assume a perfect duplexing scheme and there-
fore neglect near-end crosstalk. As the background noise at the
receiver is typically low compared to the far-end crosstalk, the
latter is the limiting factor for system performance. Under the
mentioned conditions the achievable rate per complex modu-
lated DMT-symbol for user on carrier can there-
fore be computed as

(1)

where , , models the
SNR-gap to capacity, , and is the
power spectral density (PSD) allocated on carrier by user

. Furthermore, we write , with
and and denoting the squared magnitude of

the cross-channel transfer coefficient from user to user on
carrier and noise power density of user on carrier , respec-
tively, where both are normalized by the squared magnitude of
the direct channel transfer coefficient of user .

III. GLOBAL PRIMAL AND DUAL PROBLEMS

Complementary to the power-constrained rate-maximization
problem [16], the problem of optimizing energy-efficiency for
multiuser DMT-based DSL networks with integer bit-alloca-
tion, in the following referred to as primal nominal problem,
can be formulated as

(2a)

(2b)

(2c)

(2d)

(2e)

where is the discrete set of feasible
bit-allocations per user and carrier and the number of
loadable bits is bounded by the bit-cap . Furthermore,

, where the power-alloca-

tion of user is written as , ,
and , being defined similarly to , represents the
number of bits loaded on all carriers by all users. The problem
further includes spectral mask limits and weights

, , , which may be used to trace
the boundary of a “power-region” [3] or to communicate link
congestion information to the physical layer [17]. Finally, we
consider quality-of-service constraints in terms of target-rates

in [bits/DMT-symbol].
By extracting the optimization over , , from (2) and

disregarding the mask constraints for the time being, we write
the single-carrier power-allocation problem as (cf. the power
control problem [18], [19])

(3)

where , ,

(4)

(5)

and is the target-SINR of user on carrier
. While the SINR is regarded constant by this single-carrier

problem, we will later see how the spectrum balancing algo-
rithm optimizes and determines the values and hence ,

, . The SINR-constraints in linear program (3)
keep the objective from attaining the minimum it would obtain
when neglecting the SINR-constraints, which due to is
0. Hence, at optimum the constraints hold with equality and we
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obtain, provided the problem is feasible, the unique [20] optimal
solution of (3) through (cf. also [10, Ex. 4.8])

(6)

Note that in (3) and all forthcoming robust per-carrier power-al-
location problems we omitted the weights as the SINR-con-
straints would still hold with equality at optimum, leaving ,

unchanged. It is well known [18], [19] that, assuming
nonzero background noise, crosstalk couplings and SINR-tar-
gets, a solution (i.e., a power-allocation feasible w.r.t. SINR and
positivity constraints) to (3) exists iff

(7)

where denotes the spectral radius or Perron–Frobenius
eigenvalue.

The joint consideration of power and bit-allocation in (2)
hence emphasizes the subproblem of computing a power-allo-
cation on each carrier for a given bit-allocation as demanded by
constraint (2c). While these variables are unambiguously cou-
pled in this nominal problem by (6), later on we consider the
problem of robust DSM and the application of ellipsoidal uncer-
tainty regions. These on the other hand necessitate to solve per-
carrier subproblems to map between bit-loadings and power-al-
location, similar to the problem of robust power control. Hence,
the distinction between power and bit-allocation will turn out
useful to clarify the underlying power-allocation problem on the
solution of which we will base our robust DSM algorithm, and to
derive several corresponding feasibility conditions. For clarifi-
cation of this distinction we will refer to a “bit-allocation” when
considering the number of bits loaded per carrier as variables,
while by “power-allocation” we refer to the problem of com-
puting the power necessary to support a fixed number of bits
(e.g., as assigned by a DSM algorithm).

Problem (2) consists of many per-carrier subproblems which
are coupled by the users’ target-rate constraints. Since the left-
hand side in (2b) is simply a sum, the problem is decomposable
by the linear dual relaxation (cf. also the discussion in [15]).
Relaxing only parts of the constraints in (2), its partial dual,
which in the following will be referred to as the dual nominal
problem, is given as

(8)

where the objective (partial Lagrangian) is written as a sum of
per-carrier Lagrangians

(9)

We see that for fixed values of multipliers the per-car-
rier Lagrangians can be minimized autonomously. This fact is
exploited by the energy-efficient optimal spectrum balancing al-
gorithm (EEOSB) [15], which solves Problem (8) to optimality.

IV. ROBUST SPECTRUM MANAGEMENT FOR

ENERGY MINIMIZATION

We begin our development of energy-efficient robust DSM by
introducing uncertainty in the form of a vector of un-
certain crosstalk coefficients to user on carrier normalized
by the direct channel coefficient, where again . Based
thereupon we extend the nominal problem (2) to its “robust
counterpart,” referred to as the primal robust problem (PRP),
given as

(10)

where denotes the uncertainty set of feasible normal-
ized crosstalk coefficients. Without loss of generality we may
restrict ourselves to convex uncertainty sets as stated by the fol-
lowing proposition.

Proposition 1: The worst-case rate is invariant when
replacing the uncertainty set by its convex hull .

Proof: First, we note the independence among users in
terms of uncertainty sets and target-rate constraints, and that

is monotonously decreasing in the interference term
. Hence, the worst-case can be constructed by maxi-

mizing this interference term. Assuming

(11)

using Carathéodory’s theorem [21, Prop. B.6] and remembering
that , , we have that

(12)

(13)

(14)

which concludes the proof.
As mentioned, our notation implicitly assumes independence

of uncertainty among users and carriers. The projection of the
global uncertainty onto uncertainties per user is natural, since
the rate constraints have to be fulfilled for each user separately
and an uncertainty correlation among users is irrelevant for fea-
sibility under parameter uncertainty. The independence assump-
tion among vectors , , was made to allow an ana-
lytic treatment that is independent of the underlying estimation
process.
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A. Uncertainty Regions

In this paper, we have chosen a multiplicative model of un-
certainty in the crosstalk coefficients. This choice captures for
example arbitrary temporal changes of crosstalk coefficients or
an anticipated percental estimation error. A different approach
would have been to model uncertainty using an additive error
measure. Assuming a norm constraint on the additive errors one
obtains a similar convex subproblem formulation as we will
get for ellipsoidal uncertainty, as shown in [13] for single-car-
rier power control. However, to get new insights into the re-
sulting robust problem formulation we base our derivations on
a multiplicative formulation. Furthermore, we may also regard
this choice as a way to incorporate worst-case changes in the
power-allocation of other users, e.g., due to changes of their di-
rect channel coefficients. Finally we note that qualitatively the
specific formulation of uncertainty will not alter the main con-
clusions we draw from this work.

1) Ellipsoidal Uncertainty Sets: We will first derive and an-
alyze an uncertainty set in the shape of an ellipsoid. This shape
is commonly used due to its relation to Gaussian probability
distributions. It was further chosen for its tractability and rep-
resentativeness for convex uncertainty regions with interdepen-
dence of worst-case coefficients. Under a multiplicative (per-
cental) uncertainty of normalized crosstalk coefficients relative
to their nominal value, the uncertainty set is given by (cf.Fig. 1)

(15)

where , denotes the diagonal matrix con-
structed by the elements of , and contains the uncer-
tainty parameters of all users. Note that due to positivity of vari-
ables it is sufficient to restrict our attention to values .
A robust per-carrier power-allocation subproblem in the form of
(3) can hence be posed as

(16)

where , , and

(17)

In this specific case, the semi-infinite problem (16) can be cast
in a minimax form [22]. Conferring to PRP in (10), the model
parameters maximizing the interference can be analytically de-
rived using the following relations:

(18)

Fig. 1. Schematic of an ellipsoidal uncertainty region � for � � � and � �

�, where the possible interference-maximizing set lying on the relative boundary
of � is emphasized.

Fig. 2. Illustration of the boundaries of rate-constraint SOCs and the feasible
power region (lightly shaded) for robust single-carrier power allocation with
ellipsoid-shaped uncertainty of crosstalk coefficients.

Hence, the constraint set in (16) can be written more compactly
as the product set of second-order cone (SOC) [23] constraints,
and Problem (16) can be rewritten as

(19)

Note that in order to solve the resulting SOC-program using
standard cone-solvers such as MOSEK [24], one needs to fur-
ther reformulate the problem by introducing extra variable-vec-
tors for each term , . Fig. 2 schematically
illustrates a symmetric robust power-allocation problem on car-
rier for users each located at 300 m distance from
the deployment point, , , , and all
other simulation parameters as specified in Section V. Note that
the high uncertainty-radius was chosen to emphasize the shape
of the constraint set. The lightly shaded area is the intersection
of 3-SOCs as defined by the users’ constraints in Problem (19),
the arrow represents the constant gradient of the cost to be min-
imized and the marked point indicates the unique optimum.

2) Box-Shaped Uncertainty Sets: The second type of uncer-
tainty regions we will use are box-shaped ones, given by

(20)

where . Note that we use the same uncertainty parame-
ters as in the previous section, to arrive at a fair compar-
ison to ellipsoidal uncertainty sets and extract the effect of their
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different shapes. This can be interpreted as column-wise uncer-
tainty, where column refers to the constraint matrix in linear
constraints. Furthermore, this most pessimistic uncertainty set
is equivalent to multiplying the crosstalk coefficients by

, , , and can be considered as a margin on
the crosstalk noise. The corresponding robust power-allocation
problem can then be posed in a straightforward manner as

(21)

which notably has the advantage of remaining a linear program.
Comparing the robust subproblems in (19) and (21), we see that
they differ in a single term in the constraint functions. From
triangle inequality, convexity of the square-function and using

it holds that

(22)

Hence, we conclude that the constraint set in (19) is never
more restrictive than the constraint set in (21). Therefore,
robust power allocation with box-shaped uncertainty can never
yield a lower minimum sum-power than one with ellipsoidal
uncertainty region when equal uncertainty parameters are used,
which also follows directly by inspection of their respective
uncertainty sets.

In [9], a cardinality constrained uncertainty concept was pro-
posed. Therein one assumes box-constraints for each coefficient
and restricts the number of coefficients which are allowed to
deviate from the nominal value. This approach can be used to
model the amount of interference in communication systems
where users are entering and leaving the system [13]. Hence,
if statistics on the number of users active at any time are avail-
able, this approach may be used to ensure robustness in DSL
systems when additional lines become active. Note, however,
that the users becoming active then have to adhere to the spec-
tral allocation foreseen/optimized by the DSM algorithm. When
assuming the maximum of disturbers, however, one falls
back to the box-constrained uncertainty model.

B. Implicit Outage Probability Bounds

We can also cast the power-allocation optimization problem
(19) for ellipsoidal uncertainty regions in a probabilistic frame-
work [10, Sec. 4.4.2] if we assume independent Gaussian
random vectors , , . A probabilistic problem
formulation is obtained by replacing by and

by in (19), where is the desired outage
probability, being the covariance matrix for coefficients

, and denotes the Gaussian cumulative distribution
function with zero mean and unit variance.

We are further interested in an outage probability of a ro-
bust solution to (19) with ellipsoidal uncertainty region when
the real uncertainty set is box-shaped (cf. (21)), which is inde-
pendent of the exact solutions to (19) and (21). The following

proposition gives loose outage probability bounds under certain
assumptions.

Proposition 2: Assume having coefficients

(23)

all being independent and symmetrically distributed in the in-
terval. The outage probabilities , , according to
a robust solution of Problem (19) are bounded by

(24)

independently of scenario, uncertainty parameters and so-
lution , where is Euler’s number. Another bound of the
outage probability is obtained by restriction to the case of inde-
pendent and uniformly distributed coefficients as

(25)

where and are the volumes of the unit ball and
the unit box in dimensions.

See Appendix A for a proof.
We note that the bound in (25) for uniform distributions is

monotonously increasing in . Eventually it becomes looser
than the more general bound in (24) when .

C. Feasibility Conditions

Using the effect of uncertainty on the power-allocation con-
straint in (21) together with the uncertainty region in (20) and
the feasibility criterion (7) for the nominal power-allocation
problem in (3) it is straightforward to derive the following suf-
ficient feasibility conditions for the robust case with multiplica-
tive uncertainty.

Proposition 3: A robust, single-carrier power-allocation is
feasible in ellipsoidal uncertainty constrained Problem (19) and
in box-uncertainty constrained Problem (21) with uncertainty
parameters if

(26)

Furthermore, if , , then a sufficient condition for
ellipsoidal uncertainty is given by

(27)

For box-shaped uncertainty sets (27) is sufficient and addition-
ally necessary.

See Appendix B for a proof.
We note that the first condition is different to the convergence

result in [13] where additive instead of multiplicative uncer-
tainty was assumed, while the latter one is equal to [25, Lemma
1] on the problem of power control with SINR margins.

D. Sensitivity Analysis of the Dual Function

In this section we will perform a sensitivity analysis for the
dual objective in (8) and derive a subgradient w.r.t. the robust-
ness parameters . Sensitivity analysis is a standard
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tool to calculate the local change of the objective to a perturba-
tion of problem-parameters, cf.[10, Ch. 5.6]. Our analysis does
however not apply to the primal objective due to the in general
nonzero duality gap of (PRP) in (10). A nonzero duality gap
does not necessarily imply the primal suboptimality of primal
solutions found by dual optimization. Furthermore, depending
on the target-rate assignment the gap may be assumed to be
fairly small [15], which motivates the following derivation and
also implies the near-optimality of EEOSB.

While we will restrict ourselves now to ellipsoidal uncer-
tainty regions, sensitivity results for box-shaped uncertainty
sets can be obtained in a similar way. We consider the partial
dual of problem PRP in (10), which is similar to the nominal
dual problem (8), but further separates the minimization over
and relaxes the robust, per-carrier SINR-constraints. Regarding
Problem (19), this dual robust problem (DRP), for which we
will present a solution algorithm in Section IV-E, can be written
as

(28)

where

(29)

and where , , is the vector of per-carrier power-
allocation constraint multipliers. Furthermore, is given by

(30)

The following proposition defines a subgradient for the dual ob-
jective in (28) w.r.t. the uncertainty parameters .

Proposition 4: Let , , and be optimal variables
for the dual robust DSM problem (28) and the per-carrier dual
subproblems (29), respectively. Then, a subgradient of
the optimal dual cost w.r.t. is given by

(31)
See Appendix C for a proof.
The sensitivity information in (31) can be readily used after

optimization of (28) (e.g., by our robust DSM algorithm pre-
sented in Section IV-E) to predict changes in the optimal dual
objective for small perturbations of , cf. Section V-B for a visu-
alization. Notably, as we see in (31), the subgradient information
demands the knowledge of optimal dual multipliers ,
at the bit-allocation optimized by DSM.

An idea to further exploit this subgradient information is in
a scheme where uncertainty parameters and energy are opti-
mized jointly. Similarly as in [25], an -adaptation stage on top
of Problem (28) would target the minimization of a weighted

sum of sum-power and a user-dependent convex and monoto-
nously decreasing function of robustness (parameters ). Since
the choice of such for energy optimization in DSL systems is
out of the scope of this work, we only refer to similar multiob-
jective decomposition schemes developed in [26] and [27].

E. Robust EEOSB Algorithm Description

We will now describe the robust DSM algorithm used to
solve (28). It consists of two hierarchical problems as seen in
(28) and (29), where the top-level algorithm used to solve (28)
is similar to EEOSB [15] and summarized in Algorithms 1
and 2. The low-level problem is the convex power-allocation
problem in (19) (or (21), respectively) and solved by standard
solvers, cf. Section IV-A. The EEOSB algorithm in Algorithm
1 is based on the (dual) optimal spectrum balancing (OSB)
algorithm in [16], adapted for our problem (2). Algorithm 2
summarizes the exhaustive search subroutine replacing the
corresponding subroutine in the original EEOSB algorithm
in [15]. More specifically, it is Line 5 which makes the DSM
algorithm worst-case robust against uncertainties as specified
in Section IV-A by solving (29). In Lines 6 to 8, we check
the solution obtained from (19) (or (21), respectively) for
feasibility and conformity with the spectral mask constraint,
compute the per-carrier Lagrangian, and store the best alloca-
tions found. Lines 11 to 17 and Lines 18 to 24 simply ensure
an exhaustive search of all feasible bit-allocations w.r.t. power
and bit-cap constraints, respectively. Note that the feasible bit
and power-allocations on all carriers may be precomputed to
improve the running time of EEOSB.

Algorithm 1: Robust EEOSB Scheme

Initialize: , ,

Function

Initialize
5:

repeat

if then
else

10: end if
if then

else
end if

until and

15: Function

Initialize
repeat

,
if then

20: else
end if

until
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Algorithm 2: Subroutine for Robust EEOSB

for to

Initialize ,
while do

5: Calculate by (19) (or (21), respectively)
if (solution was found) and then

Calculate as in (9)

10: else

while do
end while

if then

15: else
end if

end if
for to do

if then
20: end if

if then
end if

end for
end while

25: end for

The following proposition justifies the sufficiency of
checking the solutions to Problems (19) (or (21), respectively)
against the spectral mask constraints (cf. Line 6 in Algorithm 2)
in order to conclude the nonexistence of any feasible allocation
below the mask constraints.

Proposition 5: Assume the optimal solution to a power-
allocation subproblem (19) (or (21), respectively) and additional
spectral mask constraints on carrier . Then

(32)

where denotes the feasible set in (19) (or (21), respectively).
Furthermore, it holds that , where ,
and are the solutions to nominal problem (3) and robust
problems (19) and (21), respectively.

See Appendix D for a proof.
Proposition 5 implies the Pareto optimality of a solution

to Problem (3) as a special case, a result also proven in
[28, Prop. 1].

F. Complexity and Distributiveness

Complexity is one practical point to be considered for the ap-
plication of both our uncertainty regions to EEOSB [15]. For
the naive implementation using exhaustive search of any bit-al-
location feasible w.r.t. the bit-cap constraints, we have a com-

plexity per dual iteration in Algorithm 1.
Differently, the search for feasible bit-allocations in Algorithm 2
may have a lower complexity as infeasibility w.r.t. spectral mask
constraints, evaluated in Line 6, indicates also the infeasibility
of several higher bit-allocations, cf. Lines 11 to 17. Proposi-
tion 5 has shown that the powers under robust power-allocation
are element-wise higher than or equal to the nominal ones in (6).
This explains why robust EEOSB typically needs to search less
bit-allocations and is therefore faster than the original EEOSB
algorithm if the power-allocations for all feasible bit-allocations
are precomputed. For the same reasons also the two considered
uncertainty approaches may differ in their search complexity.

For each evaluated bit-allocation we face the subproblem of
computing a robust power-allocation in Line 5 of Algorithm 2.
The latter has in the case of a SOC-problem [23] as well as in
case of a matrix inversion an asymptotic complexity of ,
assuming the matrix inversion for the case of box-uncertainty is
performed by Gaussian elimination. The practical running time
to solve the respective subproblems however is to our experience
several magnitudes higher in case of ellipsoidal uncertainty.

As the EEOSB algorithm is only practical for a very moderate
number of users, it is also interesting to see how the two ap-
proaches are implementable in schemes with lower complexity.
When applying an iterative scheme over users as done in en-
ergy-efficient iterative spectrum balancing (EEISB) [15], we
recognize that both approaches suddenly have a similar com-
plexity for evaluating the robust power-allocation for a certain
bit-allocation. In case of ellipsoidal uncertainty regions we do
not need to solve the SOC-problem (19) anymore, but instead
evaluate the feasible power-allocation for user , ,

, by

(33)

where notably the right-hand side does not depend on , cf.
Problem (19).

Besides computational complexity, another practical point is
the possibility of distributed implementations. The continuous
and heuristic energy-efficient spectrum balancing (EESB) algo-
rithm in [3] theoretically allows for a semi-distributed imple-
mentation based on modems measuring their total noise and a
spectrum management center (SMC) having information about
cross-channel couplings. This message-exchange scheme nat-
urally carries over to box-constrained uncertainty, where each
modem additionally has to measure the background noise sep-
arately to derive the pure crosstalk noise and the virtual noise
term , cf. (21), and appropriately
scales the feedback messages to the SMC. Similarly an itera-
tive water-filling type of algorithm [15] can be deployed under
box-shaped uncertainty. Unfortunately there is no way to effi-
ciently derive or measure the term distribu-
tively, which is why both distributed schemes EESB and itera-
tive water-filling lose their attractiveness under the ellipsoidal
uncertainty approach (or in fact any other non-box-shaped un-
certainty region).

Hence, we see that the SOC-constraints in (19) couple the
power-allocations of all users on each carrier. The distributed ro-
bust power-control algorithm for additive, ellipsoid-shaped un-
certainty in [13] allows for delayed messaging of the coupling
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terms. Still, in a multicarrier system this means that a user has
to transmit the whole optimized power-allocation after his
iteration in order for other users being able to make their de-
cisions distributively. Despite the negative results in terms of
distributiveness for ellipsoidal uncertainty sets, in Section V we
will still consider these sets in order to compare different levels
of uncertainty. We omitted any discussion of convergence for
the mentioned robust iterative schemes beyond the simulation
results in Section V. This is because convergence conditions us-
able in practice are even not available for the nominal iterative
algorithms.

V. SIMULATIONS

The aim of the following simulations is to evaluate and
compare the proposed robust DSM approaches (optimization
problem DRP in (28) with box-shaped or ellipsoidal uncer-
tainty sets) in terms of the extra energy consumed or max-min
rate lost. We consider two VDSL upstream scenarios, where
three users are located at 200, 400, and 600 m, and ten users
located at 100, 200, 1000 m distance from the deploy-
ment point, respectively. We note that there is no difference
between ellipsoidal and box-shaped uncertainty regions when
only two users are considered. However, the consideration of
a three-user scenario already allows to study the differences
between the considered uncertainty regions by the near-optimal
robust EEOSB algorithm in Algorithm 1 using the robust
power-allocation subroutine in Algorithm 2, while keeping the
combinatorial complexity at a manageable level. The ten-user
scenario will be simulated using the EEISB algorithm [15]
and the simple modification of the considered crosstalk as
given in (33) for ellipsoidal uncertainty sets, or simply scaled
crosstalk coefficients for box-shaped uncertainty sets, respec-
tively. The simulation parameters were chosen according to
the ETSI VDSL standard [29], with an SNR-gap 12.8 dB
and two transmission bands as defined in band plan 997. The
background noise comprised ETSI VDSL noise A added to a
constant noise floor at 140 dBm/Hz. For ease of exposition,
we have used an identical uncertainty parameter for all users,
i.e., , . The values for the uncertainty parameters

will be varied around the value one, based on real world
crosstalk parameter uncertainties indicated in [30].

A. Robust Power Allocation

Fig. 3 illustrates the optimal PSDs for an uncertainty-param-
eter (which under box-shaped uncertainty sets is equiv-
alent to a crosstalk noise level virtually increased by approx-
imately 7 dB) and target-rate 7.5 kb/DMT-symbol (or,
equivalently, 30 Mb/s) for all three users. As intuitively ex-
pected, the bit-allocation over carriers tends to avoid crosstalk
when a robust power allocation is used. Hence, large parts of
the spectrum are then divided among the users. Furthermore,
the spectral mask constraint prohibits the loading of more bits
in the upper subband and hence also parts of the lower subband
with less attenuation and partly lower crosstalk coefficients are
used exclusively by a single user.

B. Energy Cost for Robustness

The extra robustness will certainly have a price in terms of a
higher power consumption. In Fig. 4 we exemplify this “price

Fig. 3. Comparison of optimal power-allocations over carriers for an uncer-
tainty parameter � � � and a target-rate of 30 Mb/s for all three users.

of robustness” in DSM under ellipsoid/box-shaped uncertainty
regions for equal target rates. Considering Fig. 4(a) obtained by
the near-optimal robust EEOSB algorithm, we see that the in-
crease in sum-power from the nominal solution under uncer-
tainty is negligible at lower target rates. This is due to the fact
that crosstalk noise levels can be kept low as well at an op-
timum power-allocation. The same holds for small uncertainty
radii under both considered uncertainty-region shapes over the
whole rate range. As discussed in Section IV box-shaped un-
certainty regions yield a higher level of conservatism compared
to ellipsoidal ones, but also demand an extra energy consump-
tion for the additional worst-case robustness. The difference be-
tween the uncertainty set shapes in terms of sum-power is most
notable for medium-size uncertainty parameters (e.g., ,
corresponding to 100% uncertainty in the crosstalk coefficients
or 3 dB crosstalk noise margin under box-shaped uncertainty
sets). For low/high values of parameter the differences vanish
as either the impact on the solution to the robust per-carrier
power-allocation problems is small (the number of loaded bits
per carrier is low), or spectrum management allows to separate
users over carriers where they would heavily interfere. Note,
however, that the difference between the uncertainty shapes at
medium uncertainties also vanishes at higher target rates if we
only sufficiently relax the spectral mask constraints.

In Fig. 4(b), we see that under the suboptimal EEISB algo-
rithm the difference between the uncertainty shapes does not
vanish for the shown medium/high uncertainty values, also not if
one neglects the spectral mask constraint. This can be explained
by both, its suboptimality and the correspondingly smaller rate
region.

Fig. 5 compares both uncertainty sets by showing the depen-
dency on parameter , again using our robust EEOSB algorithm.
This plot corresponds to a vertical cut through the curves in
Fig. 4(a) at a rate of 30 Mb/s, where for we have added the
subgradient information computed by (31). Notably the fixed
target rate is relatively large for the chosen scenario, empha-
sizing again the lower energy consumption of ellipsoidal uncer-
tainty sets in the medium uncertainty range. The extra power
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Fig. 4. Minimum sum-power of robust optimization for box/ellipsoid-shaped
uncertainty sets with equal target-rates: (a) in the three-user VDSL scenario and
(b) in the ten-user VDSL scenario.

investment for robustness compared to the nominal sum-power
can be seen to be 2 dB under both uncertainty sets for values
of the uncertainty parameter . The largest difference
between the two set shapes among the simulated uncertainty
values 610 W can be seen for a medium-size uncertainty

. At the highest shown uncertainty the bit alloca-
tion is orthogonal among users and higher uncertainties would
hence not further increase the necessary sum-power.

C. Worst-Case Rate Loss

In this section, we will investigate the relationship between
the maximal worst-case rate loss over users w.r.t. the target-rates

, and the necessary energy investment for robustness.
For this purpose, we will compute nominal solutions to nominal
problem (8) and regard the rate loss when applying worst-case
crosstalk parameters. When calculating this rate loss, we dis-
tinguish between worst-case crosstalk noise under ellipsoidal
and box-shaped uncertainty regions with identical uncertainty
parameter , respectively, as indicated by “Ellipse” and “Box”

Fig. 5. Dependency of minimum sum-power on uncertainty parameter � in a
three-user VDSL scenario for equal target-rates of 30 Mb/s; subgradient infor-
mation at � � � was computed using (31).

Fig. 6. Maximal rate loss per user under worst-case crosstalk parameters com-
pared to target rates (� � �, box/ellipsoid-shaped uncertainty set, continuous/in-
teger worst-case bit allocation).

in Fig. 6, cf. also Problems (19) and (21). For the robust solu-
tion under ellipsoidal uncertainty regions, we can also compute
a worst-case rate loss, namely by picking worst-case parameters
from a box-shaped uncertainty region with corresponding un-
certainty parameter . Another subtlety is whether the bits per
carrier after considering worst-case parameters are rounded to
the nearest lower integer or not, indicated by the terms “Integer”
and “Continuous” in Fig. 6, respectively.

It can be noticed that the worst-case rate loss of the nominal
solution under integer rounding of the worst-case bit allocation
is quite dramatic, cf. Fig. 6. It is naturally decreasing in the per-
cent of the target rates as the number of loaded bits increases
and the impact of the rounding procedure decreases. We find the
rate loss of the robust solution for ellipsoidal uncertainty regions
comparably high when worst-case parameters from box-shaped
regions are assumed and the mentioned rounding procedure ap-
plied afterwards.

We will now consider only the minimum rates of nominal/ro-
bust solutions under box-shaped uncertainty sets and without
the following rounding of the bit allocation. As an example, se-
lecting 30 Mb/s in the three-user scenario, we see that ro-
bust EEOSB with ellipsoidal uncertainty regions prevents more
than 70% of the worst-case rate loss the nominal solution would
suffer, while saving around 50% of the extra energy for robust
EEOSB under box-shaped uncertainty regions, cf. Table I and
Figs. 4(a) and 6. Similarly, regarding the ten-user scenario and
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TABLE I
COMPARISON OF MINIMUM (WORST-CASE) RATES PER USER AND SUM-POWER

FOR � � � IN A SCENARIO WITH (A) THREE USERS AND � � 30 Mb/s, OR (B)
TEN USERS AND � � 12 Mb/s, � � � � ; NOMINAL AND ROBUST SOLUTIONS

UNDER BOX-SHAPED/ELLIPSOIDAL UNCERTAINTY REGIONS; WORST-CASE

CROSSTALK PARAMETERS TAKEN FROM BOX-SHAPED UNCERTAINTY REGIONS

12 Mb/s, we find that robust EEOSB with ellipsoidal un-
certainty regions prevents more than 50% of the worst-case rate
loss while saving around 60% of the extra energy, cf. Table I and
also Fig. 4(b).

D. Comparison Between Robust DSM and Heuristic Search

Another question one may ask is how much we save by con-
sidering uncertainty in crosstalk coefficients directly compared
to other strategies which also increase robustness. A simple
heuristic we may think of for achieving feasibility under pa-
rameter uncertainty is to search for (uniformly for all users) in-
creased target rates to the nominal problem (8) until we find a
nominal solution that achieves the original target rates under
worst-case crosstalk parameters. Furthermore, we would like
these increased target rates to be as low as possible to save en-
ergy. Hence, we performed a search on target rates with adaptive
step-size and in each iteration solve the dual nominal problem
(8) using the standard EEOSB algorithm. The target-rate search
halts if the (absolute, averaged over users) search uncertainty in
worst-case rates relative to the original target rate falls below

. By worst-case rates we understand, similarly as in the
previous section, the achieved rate under worst-case parameters
for the nominal solution under increased target rates and fol-
lowing rounding of the bits on all carriers. Thereby, one may
finally end up in an allocation under increased target rates for
the nominal problem which is feasible for DRP in (28) under
worst-case parameters. Notably, this approach would not even
guarantee the robust optimal solution if we would tune all target
rates separately. However, it may serve as a reference on how
much we “save” in power by systematic, worst-case optimiza-
tion. We note that our robust optimization approach has the ad-
ditional computational advantage of calling robust EEOSB (or
any other robust DSM method used for that purpose) only once,
while the heuristic search needs to call EEOSB numerous times,
depending on the targeted search accuracy. The maximum pos-
sible worst-case rate that can be achieved by this search strategy
is the worst-case rate for the nominal max-min target rate, cf.
Section V-E.

We see that this search strategy demands by far more extra en-
ergy compared to our robust DSM approach, cf. Fig. 7. This mo-
tivates once more the incorporation of uncertainty into the DSM
problem. For the higher target rates, it even becomes infeasible
using this heuristic to retain feasibility under parameter uncer-
tainty and integer rounding of worst-case bit allocations. While
we note that the heuristic search achieves similar sum-power

Fig. 7. Extra sum-power of heuristic target-rate search and robust optimization
compared to the nominal (nonrobust) sum-power (� � �, box/ellipsoid-shaped
uncertainty set, integer worst-case bit allocation).

values as robust EEOSB when the rounding procedure to in-
teger worst-case rates is omitted, this comparison would not be
fair anymore as robust EEOSB provides an integer worst-case
bit allocation.

E. Maximization of Minimum Rates

Differently to all previous investigations on the minimiza-
tion of the total energy, we now will investigate robust DSM
for the maximization of the minimum target rate among users.
For this purpose, we enclosed the robust EEOSB algorithm in
a bisection loop, searching for the highest feasible minimum
target rate equal for all users. In this search the users’ target
rates are increased when a feasible solution was found for the
previous rates (which are equal for all users), while they are de-
creased when EEOSB states the problem’s infeasibility, cf. the
infeasibility detection mechanism in the original EEOSB algo-
rithm [15]. This process continues until the maximum of the
minimum target rate is found up to a certain accuracy.1

An evaluation of this method is depicted in Fig. 8, where
we see a decreasing max-min rate for increasing robust-
ness, i.e., uncertainty parameter , see the similarity to
Fig. 5. Notably, for the loss in max-min rate
compared to the nominal max-min value is less than 2%

0.73 Mb/s/user under box-shaped uncertainty sets and less
than 1.5% 0.55 Mb/s/user under ellipsoidal uncertainty
sets. The largest difference between the two set shapes among
the simulated uncertainty values 0.55 Mb/s can be seen
for a medium-size uncertainty . In this scenario, the
maximum possible loss in max-min rate due to robustness is

15 , cf. in Fig. 8. At this point, the bit allocation is
already orthogonal among users and further uncertainty incurs
therefore no additional loss in rate, cf. also Section V-B.

VI. CONCLUSION

In this paper, we studied robust dynamic spectrum manage-
ment (DSM) for minimizing the energy consumption in discrete
multitone (DMT) based digital subscriber line (DSL) trans-
ceivers. We proposed an application of the robust optimization
framework to DMT systems, based on an uncertainty parameter

1The bisection search was stopped when the search uncertainty dropped
below �� � of the shown target rates.
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Fig. 8. Dependency of the maximum minimum user rate on uncertainty param-
eter � in a three-user VDSL scenario.

describing the multiplicative uncertainties in crosstalk noise.
Taking these uncertainties explicitly into account ensures fea-
sibility of minimum power allocations in DMT systems under
a deterministic crosstalk parameter uncertainty model.

Robust power allocation and the allocation of bits to carriers
could be seen to be two separate but interdependent mecha-
nisms. We have further seen that the assumption of normalized
crosstalk coefficients lying in ellipsoidal uncertainty sets results
in a high computational overhead for a central spectrum bal-
ancing scheme compared to box-shaped ones, increasing expo-
nentially with the number of users. Iterative and less complex
DSM algorithms can, however, still be deployed under the ro-
bust optimization framework.

Simulation results demonstrate that while box-shaped uncer-
tainty sets are more robust, ellipsoidal ones have a lower cost
in terms of power consumption. However, as ellipsoidal uncer-
tainty sets introduce a form of coupling among users one loses
the potential of distributed DSM schemes. Furthermore, the dif-
ference in sum-power between these two approaches was seen
to be small for low/high uncertainties and target rates. This can
be explained by the capability of the proposed central and ro-
bust DSM scheme to avoid high crosstalk when profitable. Dif-
ferently, the sum-power difference between the two approaches
did not vanish at the higher uncertainties/target rates when an it-
erative DSM scheme was applied, due to its larger suboptimality
and correspondingly smaller rate region.

We also compared our method to a strategy that ensures fea-
sibility of integer bit allocations under parameter uncertainty
through heuristically increasing the users’ target rates. Sup-
porting our robust optimization approach, this more complex
heuristic was seen to necessitate many orders of magnitude
more energy compared to our central robust DSM scheme.

Concluding, we believe that box-constrained uncertainty re-
gions (i.e., safety margins on crosstalk coefficients) are the most
promising worst-case approach in practical DSL systems. Fur-
thermore, they are implementable without changes in current
DSM algorithms.

APPENDIX

A. Proof of Proposition 2

The first part of the outage probability bounds can be imme-
diately derived based on [8] as follows. The outage probability

of an allocation in Problem (21) under symmetric distribu-
tion of crosstalk coefficients in the interval (23) can (based on
the constraint inequalities in (21)) be written as

(34)

where , with being independent, sym-
metrically distributed random variables following from the defi-
nition of the distribution in (23). A solution to (19) is necessarily
feasible and we may hence insert the constraints from (19) into
(34), giving

(35)

(36)

The result follows together with the probability bound used in
the proof to [8, Prop. 3.1]

(37)

where , , are random variables with prop-
erties as specified above, and is Euler’s number.

In the case of uniformly distributed parameters we may
simply relate the volumes of ellipsoidal [31, p. 67] and box-
shaped uncertainty regions from (15) and (20) to obtain the
second given outage probability bound.

B. Proof of Proposition 3

In the following we will derive feasibility conditions of
robust power-allocations for Problem (21) dependent on the
matrix , defined in (4) and the multiplicative un-
certainty parameters . Regarding the feasibility condition in
(7), for feasibility of (21) it has to hold that the spectral radius

, where ,

(38)

and is an arbitrary vector with , ,
, cf. the constraints in (21) and the definitions in (4), (17),

and (20). Reformulation of as follows, where
denotes the Frobenius norm, yields

(39a)

(39b)

(39c)

(39d)

(39e)

(39f)

(39g)
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where in particular (39c) follows from (38) and the definition
of the Frobenius norm, and (39d) follows from the definition
of . Hence, is sufficient for

to hold. By (22), this condition is also
sufficient for feasibility of (19), which proves the first part of
the proposition. Having the same uncertainty parameter for
all users we can write more simply , and as the
largest eigenvalue necessarily also scales with we obtain
the second part of the proposition.

C. Proof of Proposition 4

In order to derive a subgradient of the optimum to the dual
robust DSM problem (DRP) in (28) with ellipsoidal uncertainty
regions, we first interpret the optimal power-allocation to
subproblem (19) being a function of the optimal La-
grange multipliers for the SINR-constraints in (19), cf. (29) and
(30). Furthermore, the dual function in (29) with uncertainty pa-
rameters can be written as

(40)

where is a linear function in , cf. (30). Note
that Danskin’s theorem [21, p. 737] does not require any addi-
tional assumptions on convexity of w.r.t. and is
therefore applicable to our case, yielding a subgradient
of in (28) w.r.t. in the form of

(41)

This can also be seen by the following relations. Collecting all
terms in (30) for a carrier excluding the target-rate related
terms, we define the power-allocation related function

(42)

Then we have that

(43)

(44)

where the first inequality holds since is the maximizing
value in (42) for and not necessarily for , and

denotes the vector made up by the given elements
indexed by . Equation (44) is however exactly the definition
of a subgradient [21, p. 731]. As the subgradient of a sum
equals the sum of subgradients, the result given in (41) follows.
We note that the subgradient will not be unique in general
as the per-carrier subproblems are coupled by the target-rate

constraints, and is obviously discontinuous as we vary
when the optimal, discrete bit-allocation changes, cf. also

[10, Sec. 5.6.3]. Furthermore, it is this discreteness of which
hinders us to differentiate w.r.t. in order
to denote solely depending on .

Proof of Proposition 5: We begin by proofing the first
part of the proposition stated in relation (32). Its necessity
follows from the feasibility of the solution to Problem (19)
(or (21), respectively) for the power-allocation subproblem
(19) (or (21), respectively). To show sufficiency, assume that

, denoting the users’ spectral mask con-
straints on carrier , and that there exists a feasible allocation

fulfilling the constraints in (19) (or (21), respectively)
with strict inequality. Then we could decrease the power-al-
location of those users exceeding their SINR-target, staying
below the mask constraints. At the same time the other users’
SINR constraints would stay feasible as the left-hand-side of
the constraints in (19) (or (21), respectively) are monotonously
decreasing functions of other users’ powers. Following this
way we end up in an allocation fulfilling the SINR
constraints with equality. In Section III we stated that at the
unique solution to (3) all SINR-constraints are tight. The same
arguments can be applied to show corresponding statements
for the solutions of robust power-allocation subproblems (19)
and (21), respectively. Using this uniqueness property, it fol-
lows that , which contradicts the assumption

and concludes the proof of (32).
To proof the final statement in the proposition, we note that

, where , and
are the feasible sets in problems (3), (19) and (21), respectively.
Assuming (unique) solutions , and to nominal
problem (3) and robust problems (19) and (21) exist, it trivially
holds that

(45)

(46)

Using we also have

(47)

(48)

and using relation (32) it follows that

(49)

(50)

which concludes the proof.
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